您的浏览器不支持JavaScript,请开启后继续
新能源材料与器件导论=Introduction to New Energy Materials and Devices:英文

新能源材料与器件导论=Introduction to New Energy Materials and Devices:英文

  • 作者
  • 吴宇平、朱玉松、(南非)特尼斯·范·雷 编著

以太阳能、风能、潮汐能、生物质能和核能等为代表的可再生能源和与其配套的电化学储能系统组成的现代能源体系,正逐步取代传统化石能源。世界各国正全面布局,争取占领该领域的技术制高点。新能源材料与器件是实现新能源转化和利用,以及新能源技术规模化应用的关键,是发展新能源汽车、可再生能源、智能电网、新材料、节能环保、高端装备制造等战略性新兴产业的重要支撑,更成为各国加大...


  • ¥198.00

ISBN: 978-7-122-37184-3

版次: 1

出版时间: 2020-10-01

图书介绍

ISBN:978-7-122-37184-3

语种:英文

开本:16

出版时间:2020-10-01

装帧:精

页数:321

图书前言

With the rapid development of the research and development of China in the field of new energies such as solar cells, wind energy, lithium batteries, supercapacitors, and fuel cells, more and more foreigners come to China for study and collaboration. And more students want to communicate timely with the foreigners. Here for the first time we take an initial step to compile a series of books for the majority, New Energy Materials and Devices, in English. This is the second book in English. The first one entitled “Lithium-Ion Batteries: Fundamentals and Applications” was published in 2015 by CRC Press, and this is the second one. The finishing of this book got the financial support of China Science and Technology Academic Works Publishing Fund and laborious work from our lab members including Zaichun Liu, Weigang Wang, Deqing Cao, Daqian Ruan, Chuanchao Sheng, Wenqi Yan, Fuxiang Ma, Chunyang Li, Kai Zhang, Weibin Zhou, and Wenzhuo Wu is the prerequisite. The strong recommendation of Prof. Liquan Chen, Academician of China Academy of Engineering, and Prof. Zifeng Ma, Shanghai Jiaotong University are also greatly indebted.
Further appreciation should be delivered to Prof. Shibi Fang. In 1994, one of the main editors of this textbook, Prof. Yuping Wu, came into the field of new energy. Since then, 25 years passed. At that time, one of his supervisors, Prof. Shibi Fang, provided him valuable guidance and assistance so that he can achieve some success in his care. The finishing of this textbook at this special occasion is a salute to Prof. Shibi Fang to acknowledge his valuable cultivation and contribution.
Of course, some indispensable and ever-lasting financial supporters are greatly appreciated including MOST (2018YFB0104301, 2017YFF0210703, 2016YFB0700604, 2010DFA61770 and 2007CB209702), NSFC (U1601214, 51425301, 51873086, 51673096, 21374021, 21073046, 50573012 and 0474010), STCSM (14520721800, 12JC1401200, 09QH140040, 04QMX1406, 0552nm025, 0452nm064, and 0352nm079), Education Department of Jiangsu Province, Alexander von Humboldt Foundation, Research Foundation of State Key Lab (ZK201805), and Sanyo Chem. Ind. Co. Ltd. Of course, start-up funding from Nanjing Tech University and Fudan University are also greatly acknowledged.
This textbook is not only targeted for sophomores, juniors and seniors but also valid for graduates and policy-makers. It can also be textbook of Specialty English for the majority of New Energy Materials and Devices.
Of course, it is exclusively the authors’ responsibility if there are some slips or mistakes. Kind and helpful hints or suggestions will be much thanked.

Yuping Wu

作者简介

吴宇平,南京工业大学能源科学与工程学院院长,教授,博导。国家自然科学基金“杰出青年基金”获得者(2015),第十三批中组部“国家千人计划” 创业人才项目入选者(2016),江苏省“双创计划”人才(2017),连续三年(2015-2017)入选全球高被引学者名单,入选全球具影响力的科研菁英名单(2015)。主要研究方向为新型储能体系及其关键材料的研究和开发。目前主持完成国家自然科学基金项目4项、科技部国际合作项目1项,参加完成国家科技部“973”项目1项。目前主持国家杰出青年基金1项、国家自然科学基金委-广东省联合重点项目1项,并参与了国家重点研发计划“基于材料基因组技术的全固态锂电池及其关键材料研发”项目。已在国际专业学术期刊如Chem. Soc. Rev., Angew. Chem. Int. Ed.、Prog. Mater. Sci.、Energy Environ. Sci.、Adv. Mater.、Adv. Energy Mater.、Nano Lett.发表学术论文300余篇,37篇被列入ESI本领域高引用文章,被SCI核心期刊引用超过1万余次,H-指数58;授权发明专利35项;编写了有关能源储存系统与材料的中英文著作6部,全球销量超过5万册;多次受邀到国外访问和/或作邀请报告和演讲;多次参加美国、澳大利亚、韩国、南非等国家的博士论文和科研项目进行评审;并兼任多个国际会议的国际顾问。

精彩书摘

以太阳能、风能、潮汐能、生物质能和核能等为代表的可再生能源和与其配套的电化学储能系统组成的现代能源体系,正逐步取代传统化石能源。世界各国正全面布局,争取占领该领域的技术制高点。新能源材料与器件是实现新能源转化和利用,以及新能源技术规模化应用的关键,是发展新能源汽车、可再生能源、智能电网、新材料、节能环保、高端装备制造等战略性新兴产业的重要支撑,更成为各国加大技术投入的重点。
《Introduction to New Energy Materials and Devices》一书,全面系统地介绍太阳能、氢能、生物质能、核能、动力电池、储能和燃料电池等研究的基础知识和最新进展。以储能和换能为顺序,先系统介绍了目前电化学储能系统,如锂离子电池、其他新型电池和超级电容器的工作机理、发展历史和最新进展;接着介绍了常见的换能系统如燃料电池、太阳能电池、太阳能制氢的研究现状和未来趋势;最后简单介绍了生物质能、核能和其他新能源的发展展望。本书深入浅出,每一章均从基础知识讲起,内容涉及材料、物理、化学、电子、机械等多学科,知识体系涉及固体物理、电化学、材料科学与基础、半导体物理与器件、薄膜技术与材料等。接着从基础讲到应用,探讨对应储能换能器件的组装、存在的问题和发展方向。该书既避免枯燥的机理介绍,又能使读者在对储能换能器件的深入了解中加深对机理的了解。
本书采用全英文编写,是新能源、电池材料、储能等领域科研与管理人员的参考书,也是高等院校新能源材料与器件,应用化学,能源化学、化工、材料及相关专业的本科生、研究生的双语教材或参考书,同时也对我国加强对外开放、培养“一带一路”的在华专业留学生具有良好的参考价值,也适合于相关的科研与管理工作者入门参考之一。

目录

Chapter 1 Introduction	001
1.1 Brief introduction to world energy consumption	001
1.2 History of various new energy materials and devices	006
1.2.1 Batteries	006
1.2.2 Supercapacitors	008
1.2.3 Fuel cells	009
1.2.4 Solar cells	010
1.2.5 Biomass energy	012
1.2.6 Nuclear energy	012
1.3 Principles of various new energy materials and devices	013
1.3.1 Principles of metal-ion secondary batteries	013
1.3.2 Principles of other secondary batteries	014
1.3.3 Principles of fuel cells 	015
1.3.4 Principles of supercapacitors	017
1.3.5 Principles of solar cells	017
1.3.6 Principles of solar-to-hydrogen	018
1.3.7 Principles of biomass energy	019
1.3.8 Principles of nuclear energy	019
1.4 Some requirements for various new energy materials and devices	020
1.4.1 Requirements for lithium secondary batteries	020
1.4.2 Requirements of other secondary batteries	020
1.4.3 Requirements of fuel cells	022
1.4.4 Requirements of supercapacitors	023
1.4.5 Requirements of solar cells	023
1.4.6 Requirements of solar-to-hydrogen conversion	023
1.4.7 Requirements of biomass energy	024
1.4.8 Requirements of nuclear energy	024
1.5 About this book	024
References	025

Chapter 2 Lithium secondary batteries	028
2.1 Positive electrode materials for LIBs	029
2.1.1 LiCoO2-based positive electrode materials	030
2.1.2 LiNiO2-based positive electrode materials	031
2.1.3 LiMn2O4-based positive electrode materials	032
2.1.4 LiFePO4-based positive electrode materials	034
2.1.5 LiNi1-x-yCoxMnyO2 (NCM) positive electrode materials	034
2.2 Negative electrode materials for LIBs	036
2.2.1 Graphite	 036
2.2.2 Si-based materials	038
2.2.3 Titanium oxides	038
2.3 Electrolytes for LIBs	039
2.3.1 Liquid electrolytes	040
2.3.2 Solid electrolytes	043
2.4 Separators for LIBs	045
2.4.1 The functions and characteristics of the separator	045
2.4.2 Separator types	046
2.4.3 Separator preparation methods	047
2.5 Aqueous rechargeable lithium batteries	049
2.5.1 First generation aqueous rechargeable lithium batteries	050
2.5.2 Second generation aqueous rechargeable lithium batteries	051
2.5.3 Third generation aqueous rechargeable lithium batteries	052
2.5.4 Side-reactions with H2O and O2 in an electrolyte	  053
2.5.5 Water-in-salt aqueous rechargeable lithium batteries	054
2.6 Li-sulfur batteries	054
2.6.1 Principles of Li-sulfur batteries	055
2.6.2 Sulfur positive electrodes	056
2.6.3 Electrolytes for Li-sulfur batteries	056
2.7 Li-air batteries	057
2.7.1 Water-based lithium-air batteries	059
2.7.2 Organic lithium-air batteries	059
2.7.3 Water-organic two-liquid system lithium-air batteries	059
2.7.4 Solid-state lithium-air batteries	060
2.7.5 Ionic liquid system lithium-air batteries	060
References	060

Chapter 3 Other secondary batteries	065
3.1 Redox flow batteries	065
3.1.1 Polysulfide bromide battery (PSB)	068
3.1.2 ZNBR battery	068
3.1.3 Vanadium redox flow battery (VFB)	069
3.2 Na-S battery	070
3.2.1 Principle of operation	070
3.2.2 The configuration of the NAS battery	072
3.2.3 NAS battery features	073
3.2.4 Composition and crystalline structure of b-alumina	074
3.2.5 Challenges of NAS batteries	075
3.3 Other metal-air batteries	075
References	079

Chapter 4 Fuel cells	082
4.1 Introduction	082
4.1.1 Some history	082
4.1.2 Ordinary fuel cells	083
4.1.3 Advantages and disadvantages of fuel cells	084
4.1.4 Types of fuel cells	087
4.2 Fuel cell thermodynamics	095
4.2.1 How a basic fuel cell works	095
4.2.2 Fuel cell performance	095
4.2.3 Fuel cell internal energy	097
4.2.4 First law of thermodynamics	097
4.2.5 The second law of thermodynamics	098
4.2.6 What are thermodynamic potential and enthalpy	098
4.2.7 The calculation of reaction enthalpy	100
4.2.8 The Gibbs free energy	100
4.2.9 Factors influencing reversible voltage and calculation	101
4.2.10 Ideal fuel cell efficiency and actual fuel cell efficiency	103
4.3 Fuel cell reaction kinetics	104
4.3.1 Current basic physical quantity calculation	104
4.3.2 Calculation of reaction rate	105
4.3.3 Tiffier equation	105
4.3.4 Responsive charge transfer	106
4.3.5 Charge transfer can cause voltage loss	107
4.3.6 The physical significance of conductivity	108
4.4 Fuel cell systems	108
4.4.1 General description of fuel cell systems	108
4.4.2 Fuel cell stack	109
4.4.3 Fuel transfer processing subsystem	110
4.4.4 Power transmission subsystem	111
4.4.5 Fuel cell design levels: the unit cell, the stack, and the system	112
4.5 Fuel cell based power systems	115
4.5.1 Hybrid fuel cell power system	115
4.5.2 Standalone fuel cell power system	116
4.5.3 Grid connected fuel cell power systems	116
4.6 Applications of fuel cells	117
4.6.1 Fuel cell vehicles	117
4.6.2 Telecommunications	118
4.6.3 Underwater vehicles	118
4.6.4 Future targets	118
4.7 Conclusion	 119
References	119

Chapter 5 Supercapacitors	123
5.1 Introduction	123
5.2 Charge storage mechanism of supercapacitors	124
5.2.1 Electrochemical double-layer capacitors	124
5.2.2 Pseudocapacitors	127
5.2.3 Hybrid capacitor devices	128
5.3 Electrolytes	129
5.3.1 Aqueous electrolytes	131
5.3.2 Organic electrolytes	132
5.3.3 Ionic-liquid-based electrolytes	135
5.3.4 Solid- and quasi-solid-state electrolytes	135
5.4 Electrode materials for EDLCs	137
5.4.1 Carbon materials with different-scaled pores	137
5.4.2 Activated carbons (ACs)	138
5.4.3 Carbon nanotubes (CNTs)	139
5.4.4 Graphene-based electrode materials	140
5.4.5 Other carbon structures	142
5.5 Electrode materials for pseudocapacitors	143
5.5.1 Noble metal oxides	143
5.5.2 Transition metal oxides and hydroxides	145
5.5.3 Conducting polymers (CPs)	146
5.6 Hybrid capacitors	149
5.6.1 Acidic HCs	149
5.6.2 Alkaline HCs	149
5.6.3 Lithium-ion capacitors	150
5.6.4 Sodium-ion capacitors	151
5.7 Supercapacitor performance	153
5.8 Applications of supercapacitors	154
References	155

Chapter 6 Solar cells	159
6.1 Introduction	159
6.1.1 History	160
6.1.2 Classification of solar cells	162
6.1.3 Some PV parameters	163
6.1.4 Principles of solar cells	169
6.2 Silicon-based solar cells	176
6.2.1 Introduction to Si-based solar cells	176
6.2.2 Electrode materials	177
6.2.3 Basic processing and key materials	178
6.3 GaAs solar cells	181
6.3.1 History of the GaAs solar cell	181
6.3.2 Comparison with silicon-based solar cells	182
6.3.3 Other properties of GaAs materials	182
6.3.4 Performance of GaAs solar cells	183
6.4 Dye-sensitized solar cells	183
6.4.1 History of dye-sensitized solar cells	184
6.4.2 Principle of operation of a DSSC	185
6.4.3 Assembly of dye-sensitized solar cells	186
6.4.4 Main components of DSSCs	187
6.5 Organic /Polymer solar cells	187
6.5.1 History of the polymer solar cell	188
6.5.2 Principles of polymer solar cells	189
6.5.3 Advantages of polymer solar cells	189
6.5.4 Structure of a polymer solar cell	190
6.5.5 Key materials for polymer solar cells	190
6.5.6 Development of polymer solar cells	191
6.6 Perovskite solar cells	192
6.6.1 Perovskite solar cell history	192
6.6.2 Principles of perovskite solar cells	192
6.6.3 Key materials for perovskite solar cells	192
6.7 Solar power in China	193
References	193

Chapter 7 Solar-to-Hydrogen	199
7.1 Hydrogen energy	199
7.2 Hydrogen production from solar radiation	200
7.3 Direct solar thermal hydrogen generation	201
7.4 Concentrated solar thermochemical hydrogen production	203
7.4.1 Thermodynamics of solar thermochemical processes	203
7.4.2 Thermochemical processes	205
7.5 Solar photochemical hydrogen production	209
7.6 Photocatalytic hydrogen production 	210
7.6.1 Principles of photocatalytic hydrogen generation	210
7.6.2 Key photocatalytic hydrogen generation processes 	211
7.6.3 Evaluating photocatalytic water splitting systems	211
7.6.4 UV photocatalysts for water splitting	212
7.6.5 Visible light photocatalysts for H2 production 	214
7.6.6 Main challenges and opportunities	222
7.7 Photobiological hydrogen generation	223
7.7.1 Biological hydrogen production processes	223
7.7.2 Microbiology	227
7.7.3 Key enzymes	227
7.7.4 Genetic modification of microorganisms	228
7.7.5 Theoretical considerations	228
7.7.6 Energy analysis and purification of hydrogen	229
7.8 Solar-hydrogen energy systems	230
References	231

Chapter 8 Biomass energy	234
8.1 Introduction of biomass energy	234
8.1.1 Definition and features	235
8.1.2 Main resource categories	235
8.1.3 Conversion technologies	236
8.1.4 The risks and rewards of energy from biomass	237
8.2 Biofuel characteristics	238
8.3 Bioethanol	239
8.3.1 Biomass resources	240
8.3.2 Detailed process technology	242
8.4 Biodiesel	247
8.4.1 Synthesis technology	248
8.4.2 Global biodiesel status	248
8.5 Gaseous biomass energy production	249
8.5.1 Biogas	249
8.5.2 Biomass gasification	251
8.6 Biomass power generation (BPG)	252
8.6.1 BPG in China	253
8.6.2 BPG in other countries	254
8.7 Outlook	255
References	256

Chapter 9 Nuclear energy	260
9.1 Introduction	260
9.2 What is nuclear energy	261
9.3 The physical basis of a nuclear reactor	263
9.3.1 The nucleus and nuclear energy	264
9.3.2 Radioactivity	265
9.3.3 Types and patterns of decay	265
9.3.4 Nuclear reactions	266
9.4 Nuclear electric power generation	266
9.5 Nuclear reactor types and raw materials	269
9.5.1 Nuclear reactor classification	269
9.5.2 Pressurized water reactor	270
9.5.3 Boiling water reactor	270
9.5.4 Heavy water reactor	271
9.5.5 Graphite reactor	271
9.6 Power generation principles	272
9.6.1 Advantages	274
9.6.2 Disadvantages	274
9.7 Nuclear resources	275
9.7.1 Marine nuclear resources	275
9.7.2 The nuclear resources of the moon	276
9.8 Nuclear safety	276
9.9 Nuclear energy development in China	278
References	281

Chapter 10 Other energy	285
10.1 Introduction	285
10.2 Wind energy	286
10.2.1 Development of wind energy	286
10.2.2 Utilization of wind energy	290
10.2.3 Wind turbines	292
10.2.4 The global wind energy situation	294
10.3 Geothermal energy	297
10.3.1 History of geothermal energy	298
10.3.2 Types of geothermal energy	299
10.3.3 Resources	300
10.3.4 Application scenarios of geothermal energy	301
10.3.5 Challenges of geothermal energy	302
10.4 Marine energy	303
10.4.1 Characteristics of marine energy	304
10.4.2 Forms of marine energy	305
10.4.3 Use patterns for electricity generation	306
10.4.4 Installed capacity of ocean energy	307
10.4.5 Challenges of ocean energy	308
10.4.6 Prospect forecast of ocean energy	309
10.5 Conclusion	310
References	310

Index	313

发送电子邮件联系我们